skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pajic, Petar"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Previous studies suggested that the copy number of the human salivary amylase gene,AMY1, correlates with starch-rich diets. However, evolutionary analyses are hampered by the absence of accurate, sequence-resolved haplotype variation maps. We identified 30 structurally distinct haplotypes at nucleotide resolution among 98 present-day humans, revealing that the coding sequences ofAMY1copies are evolving under negative selection. Genomic analyses of these haplotypes in archaic hominins and ancient human genomes suggest that a common three-copy haplotype, dating as far back as 800,000 years ago, has seeded rapidly evolving rearrangements through recurrent nonallelic homologous recombination. Additionally, haplotypes with more than threeAMY1copies have significantly increased in frequency among European farmers over the past 4000 years, potentially as an adaptive response to increased starch digestion. 
    more » « less
    Free, publicly-accessible full text available November 22, 2025
  2. Mucin proteins provide mechanistic insights into how genes can evolve to gain novel functions. 
    more » « less
  3. Abstract Chemosensation (olfaction, taste) is essential for detecting and assessing foods, such that dietary shifts elicit evolutionary changes in vertebrate chemosensory genes. The transition from hunting and gathering to agriculture dramatically altered how humans acquire food. Recent genetic and linguistic studies suggest agriculture may have precipitated olfactory degeneration. Here, we explore the effects of subsistence behaviors on olfactory (OR) and taste (TASR) receptor genes among rainforest foragers and neighboring agriculturalists in Africa and Southeast Asia. We analyze 378 functionalORand 26 functionalTASRgenes in 133 individuals across populations in Uganda (Twa, Sua, BaKiga) and the Philippines (Agta, Mamanwa, Manobo) with differing subsistence histories. We find no evidence of relaxed selection on chemosensory genes in agricultural populations. However, we identify subsistence-related signatures of local adaptation on chemosensory genes within each geographic region. Our results highlight the importance of culture, subsistence economy, and drift in human chemosensory perception. 
    more » « less
  4. Many mammals can digest starch by using an enzyme called amylase, but different species eat different amounts of starchy foods. Amylase is released by the pancreas, and in certain species such as humans, it is also created by the glands that produce saliva, allowing the enzyme to be present in the mouth. There, amylase can start to break down starch, releasing a sweet taste that helps the animal to detect starchy foods. Curiously, humans have multiple copies of the gene that codes for the enzyme, but the exact number varies between people. Previous research has found that populations with more copies also eat more starch; if this correlation also existed in other species, it could help to understand how diets influence and shape genetic information. In addition, it is unclear how amylase came to be present in saliva, as the ancestors of mammals only produced the protein in the pancreas. Pajic et al. analyzed the genomes of a range of mammals and found that the more starch a species had in its diet, the more amylase gene copies it harbored in its genome. In fact, unrelated mammals living in different habitats and eating different types of food have similar numbers of amylase gene copies if they have the same level of starch in their diet. In addition, Pajic et al. discovered that animals such as mice, rats, pigs and dogs, which have lived in close contact with people for thousands of years, quickly adapted to the large amount of starch present in human food. In each of these species, a mechanism called gene duplication independently created new copies of the amylase gene. This could represent the first step towards some of these copies becoming active in the glands that release saliva. In people, having fewer copies of the amylase gene could mean they have a higher risk for diabetes; this number is also tied to the composition of the collection of bacteria that live in the mouth and the gut. Understanding how the copy number of the amylase gene affects biology will help to grasp how it also affects health and wellbeing, in humans and in our four-legged companions. 
    more » « less